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censored gestational age using finite mixture 
models 
Scott L. Schwartz,a*H Alan E. Gelfanda§ and Marie L. Mirandab§ 

Birthweight and gestational age are closely related and represent important indicators of a healthy pregnancy. Customary modeling for birthweight is conditional on gestational age. However, joint modeling directly addresses the relationship between gestational age and birthweight, and provides increased flexibility and interpretation as well as a strategy to avoid using gestational age as an intermediate variable. Previous proposals have utilized finite mixtures of bivariate regression models to incorporate well-established risk factors into analysis (e.g. sex and birth order of the baby, maternal age, race, and tobacco use) while examining the non-Gaussian shape of the joint birthweight and gestational age distribution. We build on this approach by demonstrating the inferential (prognostic) benefits of joint modeling (e.g. investigation of 'age inappropriate' outcomes like small for gestational age) and hence re-emphasize the importance of capturing the non-Gaussian distributional shapes. We additionally extend current models through a latent specification which admits interval-censored gestational age. We work within a Bayesian framework w hich enables inference beyond customary parameter estimation and prediction as well as exact uncertainty assessment. The model is applied to a portion of the 2003- 2006 North Carolina Detailed Birth Record data (n = 336129) available through the Children's Environmental Health Initiative and is fitted using the Bayesian methodology and Markov chain Monte Carlo approaches. Copyright c 2010 John Wiley & Sons, Ltd. 
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1. Introduction 

In this paper, on the merits of improved flexibility and interpretation (similarly argued by Tassone et al. [1]) we further investigate 
proposals in the spirit of Gage [2] and Ananth et a/. [3) to use birthweight and gestational age as a joint outcome. In addition 
to illuminating the inferential (prognostic) uses and benefits of joint modeling, we clarify the advantages of bivariate covariance 
adjustment over, for example birthweight conditional on gestational age analyses, and extend the current proposals by providing 
a model that recognizes interval-censored gestational age (to the nearest completed week). Our approach is described and 
implemented in a Bayesian framework which enables inference beyond customary parameter estimation and prediction and exact 
assessment of uncertainty. It is demonstrated using the North Carolina Detailed Birth Record (NCDBR) database. 

In Section 1.1, we briefly review the relevance and progress of birthweight and gestational age analyses, and position our work 
in this literature. Section 1.2 describes our motivating application data, the NCDBR. Section 2 reintroduces the finite mixture of 
bivariate regressions model specification for the joint variable birthweight and gestational age [2, 4, 51 and extends the model to 
allow for the common interval censored form of gestational age. In Section 3, the consequences of analyses using intermediate 
variables (e.g. birthweight conditional on gestational age analyses) are highlighted in contrast to joint analyses. Section 4 addresses 
model identifiability concerns. Finally, in Section 5 the inferential benefits of the bivariate model are demonstrated (e.g. in 
examination of disparities within the general population), as well as recovery of 'conditional' results. 
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1.1. The birthweight and gestational age tradition 

Low birthweight (LBW, < 2500 g) and Preterm birth (PTB, <37 weeks gestational age) have long been associated with many adverse 

birth and developmental outcomes (e.g. [6, 7]). However, the joint role of birthweight and gestational age, whi le recognized, is 

not well understood. Often, Small for Gestational Age (SGA, smallest 10 per cent of birthweights for a gestational age) is used as 

a proxy for birthweight and gestational age's joint information. While LBW, PTB, and SGA are used prospectively as indicators of 

potential birth complications, their physiological importance is not so clear cut; as Grimes [8] relates, these classifications achieve 

relevant sensitivity to adverse birth outcomes (Type I error) at the cost of specificity (Type II error), often not corresponding to 

medical signs of abnormalities. For instance, Wilcox [9) notes that inteNentions aimed at reducing LBW have not yet met with 

success despite the widespread interpretation of LBW as a cause of adverse birth outcomes (e.g. [10)). 

Work seeking to understand variables, such as LBW, PTB, and SGA, has thus far proved to be very productive, though it has 

perhaps not yet made its way into common practice. For instance, Wilcox [11] has brought attention to the varied relevance of 

LBW by sub-population (partially as a byproduct of arbitrary specification), and Platt et a/. [12) and Hernandez-Diaz et a/. (13] 

have provided complementary constructive advice concerning once puzzling 'birthweight paradoxes' (e.g. the 'smokers' paradox) 

as they relate to 'at risk' denominators and bias inducing statistical paradoxes, respectively. The former [12, 14- 16] is particularly 

notable since it clarifi es the difference between treating gestational age as a time axis versus a covariate (which does not capitalize 

on the temporal nature of gestational age). Namely, covariate st rategies imply comparisons within gestational age week strata 

which is prognostic in nature whereas time axis strategies compare among the 'at risk' population which is more traditionally 

'causal' in nature. Our emphasis, however, relates more to the latter (13] since it shows that the use of intermediate variables 

may introduce bias and thus provide an impetus for joint modeling. 

One area of research frequently pursued is the exploration of LBW and PTB as adverse birth outcomes themselves, and some 

effort has been spent in carefully modeling these contexts (e.g. [9, 17-22]). The proposal to study birthweight and gestational age 

as a joint variable soon followed as the natural course of this tradition, and has appeared in several places, notably, (2] and [3). 

Models for the joint birthweight and gestational age variable have subsequently been incorporated as sub-models in analyses of 

further adverse birth outcomes {e.g. fetal death), as in [4, 5]. These models introduce a logistic regression conditional birthweight 

and gestational age to model a trivariate outcome. As gestational age is again used as a covariate rather than as a time axis 

these models are prognostic in nature as indicated by the discussion from Platt et a/. [12]. 

This work pursues the original proposal to study birthweight and gestational age jointly and re-emphasizes that they are 

intimately related and thus natural candidates for a joint outcome. Further, jointly modeling birthweight and gestational age 

provides a means to bypass the potential difficulties associated with conditional modeling whi le at the same time facilitating 

understanding and interpretation of these important indicators of pregnancy health. 

1.2. Data application: NCDBR 

Through a negotiated data sharing agreement with the NC state center for health statistics, the Children's Environmental Health 

Initiative (CEHI) at Duke University has access to the NCDBR. These data include birth certificate information about all NC births 

from 1990 to 2007 (n=1862405 births). We limit our study to birth records from 2004 to 2006, (n=371924). We further restrict 

our data set to women who self-declare as non-Hispanic white (NHW), non-Hispanic black (NHB), and Hispanic {H) mothers, aged 

15- 44, who report no alcohol use during pregnancy. We only consider singleton births with no congenital anomalies, birthweight 

greater than 399 g. and gestational age from 24 to 42 weeks. Finally, we proceed with a complete case analysis using the 

variables' birthweight, gestational age, reported smoking, infant sex, reported marital status, maternal race, maternal age (15-19, 

20- 24, 30- 34, 35- 39, 40- 44, and the referent 25- 29), maternal education {middle-school or less, some high school, some college, 

at least college, and the referent high school), and first birth infant. Thus our final data set has n = 336129 obseNations. The 

population characteristics of this data set is given in the table in the final column labeled 'Overall '. This research was conducted 

according to a human subjects research protocol approved by the University's institutional review board. 

Birthweight is reported in pounds and ounces and converted to grams for the analysis. Gestational age is reported as a clinical 

estimate of the number of weeks' gestation completed. Gestational age is thus a (censored) integer valued response. Figure 1 

displays the histograms of the birthweights for each gestational age from 24 to 42, a conditional description. Figure 2 displays 

the same data in 'bivariate' form. Both figures reveal the strong dependence between the birthweight and gestational age with 

the latter revealing that a simple bivariate Gaussian specification may not suffice. 

2. Joint birthweight and gestational age model 

2. 7. Likelihood specification 

The unique shape of the joint birthweight and gestational age distribution (see Figure 2) can be flexibly modeled using 

finite-mixture models [23, 24) as discussed in [2, 4, 5). We use the s-component mixture model specified by normal distributions 

s 
(b;, g;)' "' I: rrkN(g;IJig,k +z;Pg,k• a~.k)N(b;IJib,k +z;flb,k + (g;- (Jig,k +z'; /ig,k))fl. k, ~lg.k); 

k= l 

(1) 

i.e. each component is specified as a marginal times conditional form which allows, within component, the quite natural 

interpretation of birthweight conditional on the gestational age. In (1 ), for individual i, b;, and g; are the (continuous) variables' 
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Figure 1. Histograms of binhweight by gestational age (g, 24-42) for the data subset described in Section 1.2. 
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Figure 2. A log·scale heatmap version of a bivariate histogram of birthweight and gestational ages for the data subset described in Section 1.2. 

birthweight and gestational age, respectively, and zj is the vector of risk factors with coefficients flk and intercept Ilk· The mixing 
weights (which sum to 1) are nk• and the variances are given by the cr2 's. As shown in Section S.1, we found justification for 
allowing coefficient parameters to differ by component. 

The 'centering' (see (25)) of g; in (1) results in the equivalent bivariate regression mixture model specification 
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s 
(g;.b;)' - L nkN(Mk,Sk), 
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with 

where 

Model (1) provides the framework to treat birthweight and gestational age as a (continuous) joint variable. The bivariate 

regression structure incorporates covariates zj into the component means (though not in the mixing proportions as proposed in 

the univariate case in [26]). The mixture portion of the model provides a Oexible structure to model the resulting residuals for b; 

and g; given zj. i.e. (b;,g;)
1
"' 2::1 1 rrkMk+ 2::1= 1 rrkN(O,Sk). 

The mixture structure for the residuals provides aggregated bivariate structure for birthweight and gestational age. The local

scale structure within each component is modeled by Pk which depends on fl•k• ablg.k• and ag,k· Both covariate coefficients and 

resulting birthweight and gestational age residuals are component dependent due to the component-varying parameters. The 

covariance structure Sk also varies by component. Finally, conditional models may be recovered from our joint specification; e.g. 

the conditional distribution b, [g, can be derived from (1) and is 2::1=1 qk(g;)fk(b;lg;l12:l= 1 qk(g;). where qk(g;)=nkfk(g;). 

2.2. Additional specification 

In contrast to Gage et a/. (2, 4, 5) who use direct maximum likelihood (ML) estimation, we employ the data augmented form for 

finite mixture models and introduce latent indicators v; - MN( rr,, · · ·, rr5), 2::1=1 v;,k = 1, denoting the component to which (g;.b;)' 

belongs. The resulting model is marginally equivalent to the original specification: 

s 
(g;,b;)' "' L N(Mk,Sk)l[v,k= 1]· 

k= l 

(2) 

Under this specification, ML estimation of model parameters proceeds through the Expectation-Maximiz.ation (EM) algorithm, 

whereas full Bayesian posterior inference proceeds by specifying priors and utilizing Markov chain Monte Carlo (MCMC) method

ology. The details can be found in (23) and (24). Whereas Gage (2) uses a bootstrapping approach to estimate parameter 

uncertainty, we pursue ful l Bayesian inference via a Gibbs sampling algorithm to directly provide parameter estimates and 

the associated uncertainty [27, 28). To complete our specification, we employ the following conjugate and assumed mutually 

independent prior distributions for the model parameters: 

rr - Dirichlet(p), 

Pk - N(flkO· rkol. 

cr;2
...., Gamma(ok.rk)• 

(3) 

where l'k has been incorporated into flk · This specification avoids the use of lnverse-Wishart prior specifications for the covariance 

matrix of birthweight and gestat ional age. 

2.3. Censored continuous gestational age 

Within the proposed framework we can readily deal with the often ignored issue of interval censorship of gestational age. 

Gestational age is reported in many ways, though all are typically interval censored. A standard reporting measure of gestational 

age is as Last Menst rual Period (LMP), which is reported as days since LMP. On the other hand, our gestational age data is 

reported as an integer representing the clinical estimate of the number of completed weeks of gestation (no uniform definition 

exists and the meaning of 'clinically estimated gestational age' varies by state). We imagine g; to be the true gestational age 

(a continuous variable) which we are unable to observe. We assume that the observed gf is an interval-censored version of g;. 
For the NCDBR data, we observe the number of complete weeks hence gf = l9;J. Defining g; = gf +u;. we assign u; e [0, 1) to take 

the role of an unknown parameter. If gf is interpreted differently we would modify this specification accordingly. For instance, 

if we had LMP gestational age we could introduce a Berkson measurement error model. centering true g; around the observed 

gestational age in days. 
Upon specification of a prior, u; may be seamlessly incorporated into the posterior sampling scheme. The simple prior we use 

is u;- U[O, 1 ). However, it may be argued that, given gf. the distribution for g; is likely to put more mass on days later in the 

week. i.e. the probability of birth increases on a daily basis, particularly for preterm and early term gestational ages. Thus, a more 
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general beta prior for u; is an alternate choice. Using u;- Beta(a,.r;l specifies a non-conjugate prior for this model, requiring a 
Metropolis-Hastings or Importance sampling step in the model fitting. The truncated conjugate prior u;- N(O;, •tll [0, l ) may also 
be considered. 

Recognizing the censored nature of reported gestational age measurements al lows us to: (1) treat gestational age as a 
continuous parameter; (2) acknowledge the uncertainty associated with censorship of gestational age; and (3) allow the data to 
inform us about the actual effect of the censorship (u;). 

Clinically estimated gestational age and LMP measurements are known to have error, indeed, with certain sub-populations 
possibly having more or less accurate reporting of the gestational age gf than others. The model presented here assumes 
that the reported clinical estimate of gestational age is accurate. For our data, clinical estimates of gestational age for many 
sub-populations are considered to be relatively rel iable post 2000, whereas for the remaining sub-populations this may not be 
so. The nature, effect, and size of such bias in our model is unclear. However, this consideration, in part, influenced our data 
restrict ion to the years 2004-2006. Alternative measures of gestational age such as ultrasound are more precise, but LMP and 
(many) clinical estimations of gestational age remain much more prevalent. As such, models that can account for measurement 
error are still needed. 

3. Bivariate modeling vs conditional modeling 

A wide range of literature cautions against the 'fallacy of controlling for an intermediate outcome' [13, 29-37). The apparent 
alternative to exclude intermediate variables from analyses does not seem reasonable in the birthweight and gestational age 
context. For example, in the context of a 'birthweight conditional on gestational age' analysis, ignoring gestational age entails 
a large loss of information, as evidenced by Wilcox and Skjaerven [17). Unfortunately, as is now understood, adjusting for an 
intermediate variable can result in the other observed covariate effects being wrongly boosted, attenuated, or even reversed. This 
happens for two reasons: (1) indirect effects of covariates which were mediated through gestational age are no longer attributed 
to the covariates (see, e.g. the reduced effect of smoking in [3)) and (2) spurious associations are artificially induced by back-door 
criteria violations caused by conditioning on an intermediate variable (e.g. Berkson's and Simpson's paradox). These issues were 
noted by Gage [2) and the above citations connect this rightful concern to the additional literature. 

Using the data subset described in Section 1.3, we demonstrate the extent of change brought about by these issues in 
regression coefficients using ordinary least squares. Table I shows the coefficients resulting from birthweight regressions with 
and without gestational age as a covariate. Nearly all coefficients change between regressions, some (e.g. smoking and NHB 
mother) are attenuated, whereas others (e.g. Infant sex and H mother) are boosted; some coefficients even have sign changes. 
The direction and extent of difference suggests that the behavior of lost mediated effect is due to controlling for gestational age. 
However, the difference may instead be due to the interference of spurious relationships artificially induced by back-door criteria 
violations. Because the relative contributions of back-door effect and lost mediated effect cannot be separated, intermediate 
variables should be used as covariates if coefficients are to retain their meaningful interpretation. Ignoring an intermediate variable 
(e.g. gestational age) is not necessary, however, if one employs joint modeling techniques. The modeled bivariate relationship of 
birthweight and gestational age replaces the use of either as an intermediate variable in a conditional model. 

Table I. Birthweight (standard) regressions with/without gestational age included; 95 per cent confidence intervals 
are also included. 

Covariate Birthweight regression coefficients 

Intercept - 3578.8 (- 3606.9, - 3550.7) 3385.5 (3379.7, 3391.4) 
Reported maternal smoking - 187.8 {- 192.5, - 183.0) - 227.2 (-233.4, -221.0) 
Male infant 126.2 (123.4, 1 29.0) 114.1 (1 1 0.3, 1 1 7.8) 
Mother reported not married -36.2 (- 39.8, - 32.5) - 39.6 (-44.4, - 34.7) 
Non-Hispanic black mother - 176.5 (- 180.3,-1 727) - 233.7 (- 238.7, - 228.6) 
Hispanic mother - 70.2 (- 75. 1, - 65.2) - 24.3 (- 30.8, - 17.9) 
Mother complete MS - 30.1 (- 36.9, - 23.3) - 25.9 (- 34.7, - 1 7.0) 
Mother complete some HS - 30.2 (- 34.9, -25.5) - 39.2 (- 45.3, -33.0) 
Mother complete some college 26.5 (22.3, 30.6) 27.3 (21.8,32.7) 
Mother complete college 28.5 (23. 9, 33.0) 65.4 (59.4, 71.3) 
Maternal age 15- 19 -35.4 (- 41 .2,-29.5) - 26.9 (- 34.5,-19.2) 
Maternal age 20-24 - 27.0 (- 31.0, - 22.9) - 14.0 (- 1 9.4, -8.7) 
Maternal age 30- 34 18.1 (13.9, 222) 0.8 (-4.6,6.3) 
Maternal age 35-40 21.9 (16.5,27.2) - 15.3 (-22.3, -8.3) 
Maternal age 41-45 - 0.4 (- 1 1.2, 1 0.3) - 58.7 ( -728, -44.6) 
First birth infant -120.1 (- 1 23.3, - 116.9) - 93.9 (- 98.1, - 89.7) 
Gestational age 180.2 (179.5, 180.9) 
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4. Identifiability 

4.1. Alternative non-identified parameterization 

Correlation between MCMC posterior draws of parameters can render attempted posterior sampling useless (see, e.g. (25, 38)). 

The 'centering' of g in our model curbs such unattractive circumstances. If we do not 'center' in (1 ), and replace g;- (Jlg,k + zjPg,k l 

with only g;. we have that E[b; iv;,k = 1) =Jib,k + Jlg,kP • • k+zj iPb,k + Pg,kP.k>· It follows that Jlb,k• fl •. k and flb,k will tend to drift as 
only the sums they are involved in are identified. 

4.2. More identifiability and number of components 

Model (1) is invariant under re-ordering of the labels k, i.e. k! differently parameterizations result in identical models. This well
known conundrum for mixture models known as 'label switching' is discussed in [39]. Often, order constraints on parameters 
(e.g. O; <Oj for i<J) are utilized to identify components. This was our initial approach; however, under usual specifications of our 
model, the constraints never came into play: While label-switching is common in univariate normal mixture models, we observed 
no such label-switching in our mixing. This appears to be the result of the mixing relative to the 'high-dimensional' nature of 
the proposed mixture model. In essence, for label switching to occur, components parameters (e.g. two 'intercept' parameters, 
one 'slope' parameter, two variance parameters) must be exchanged with their counterparts in another component. 

When 'many' (i.e. s = 4 or more) components are specified, the posterior becomes multimodal (within the symmetric multi· 

modality induced by label switching) and mixing across the posterior modes becomes poor. With S=4 components, the observed 
parallel posterior chains (with different initial value specifications) did not meet and instead each exhibited intermittent periods 

of apparent stability punctuated by sporadic-often slightly less favorable (as judged by log·likelihood)-re-configurations (rarely 
returning to the original configuration). The re-configurations amounted to slight changes in the component location and almost 
no detectable difference in the covariate coefficients. Thus, the mixing issue appears to be primarily one of location of the residual 
components. Nevertheless, the posterior chains showed several different plausible models, none of which appeared preeminent, 
and across which mixing was poor (indeed, we did not uncover label switching which would indicate good mixing). It is possible 
that a Metropolis step within the Gibbs sampler we employed could improve mixing, but we have not experimented with this. 

This same circumstance of 'numerous adequate models' no doubt exists under ML estimation, but is more easily uncovered 
through Bayesian analysis since in ML estimation only a single model is returned once the maximization algorithm has 'converged' 
(i.e. stopped making meaningful changes to the likelihood) to some mode. 

Model selection involving competing unconverged chains (models) is a difficult issue. One pragmatic (though somewhat 
ad hoc) approach might use an EM algorithm to find the best initial values (as judged by largest likelihood), and then proceed 
with full Bayesian inference using the stable part of the chain. Various competing 'models' may then be pragmatically chosen 
using minimum posterior predictive loss in cross-validation [40], or naive Bayesian information criterion (BIC}. Although it is not 
theoretically appropriate to use BIC in the finite mixture model setting (even for converged chains). it has seen some application 
and success [23), and hence we pursue this criterion. For both three-component (s = 3} and two-component (s= 2) models, we 

did not observe the mixing issues described above. Indeed, proper identification of a two component (s=2) model is shown in 
(41). Thus, we assumed that these models (chains) had converged and compared them using the BIC criterion which for our data 
set strongly suggested the superiority of three-component (s=3) models to two-component (s=2) models. Our choice to avoid 
comparison to any four component (s = 4) models was driven by the mixing issues described above, and is thus an artifact of 
the operational fitting of the model rather than a judgement of clinical significance or a model choice criterion. 

5. Model demonstration 

This section demonstrates our three component (s = 3) model using the subset of data described in Section 1.2. A wide range 
of alternative prior and initial value specifications produced only slightly varied results in the three-component (s=3) case, and 
thus we restrict our demonstration to specifications of Table II. Burn in was set at 5000; results of this section were generated 
from the subsequent 100000 MCMC draws provided by the Gibbs sampler directly available under our specification. The mixing 
of individual chains did not show lack of convergence. 

Where useful, we illustrate inference under our model through a series of 'prototypical' individuals, A- H. A- H represent the 

possible configurations of NHB/ NHW, reported smoking, and reported marital status, for a 25· to 30·year-old mother at the high 
school education level with a male infant. The covariate configurations of A- H are given in Table Ill. 

5.1. Bivariate regression 

One benefit of using a bivariate regression model is that a single model produces coefficient estimates of the relationship between 
birthweight and gestational to covariates (and each other) simultaneously. Further, the mixture model framework provides s = 3 
regressions (not just one), with each component supporting a separate regression. This allows for improved flexibility in the 
variety of shapes that may be captured by the model as well as the potential to uncover the differential strength of covariate 
effects across components as shown in Table IV. The ability to explicitly model and detect how relationships differ by component 

sub-populations may be contrasted with Table I. 
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Table II. Initial values and prior specifications for the results of a three-component (s=3) model, used 
throughout in Section S. 

Comp. 1 Comp. 2 Comp. 3 

Initial values 

1I 0.34 0.33 0.33 
Jib 3000 2500 1500 

' 
40 37 33 

250000 250000 250000 

~ 2 2 2 
p 0 0 0 

Prior hyperparameter values 

p 1 1 1 
Jib 3000 2500 1500 
llg 40 37 33 
flo Jib• Jig· 0 Jib, llg· 0 lib, llg, 0 
Eo 1000/ 1000/ 1000/ 
a 1 1 1 
r 1 1 1 

Table Ill. Individuals A- H provide eight risk factor sets for mothers used for demonstration in Section 5 
and Tables VII- X; all mothers are 25-30 years old and at the high school education level with a male 
infant. 

Individual A B c D E F G H 

Mother reported not married 0 1 0 0 1 0 
Non-Hispanic black mother 0 0 1 1 0 0 
Reported maternal smoking 0 0 0 0 

5.2. Mixture sub-populations 

As was the emphasis in [2], a benefit of the mixture model approach is that the components provide a natural classification 
mechanism. In finite mixtures of regressions, this classification is an augmentation of the covariate set because the mixture feature 
of the model is defined on the residuals. After covariance adjustment, the leftover structure defines the components and the 
corresponding memberships. The location and shape parameters for the three components are given in Table V. The component 
configuration (dist ributional location) is governed by the covariates (which creates flexibil ity in modeling), as in Figure 3 which 
shows a general lowering in birthweight and lengthening of gestational age towards shorter ages for individual A relative to 
individual H. 

Under our latent indicator specification (Section 2.2), the components are formed by repeatedly stochastically assigning every 
individual observation i membership in one of the components. Specifically, for each posterior iteration r, every individual i is 
randomly assigned to a component k111 (v11k1 = 1, v<r.> = 0 for p> :f. k~11 ) according to probabilities of component membership (under I I, 1 11), I I 

the current iteration of the model: o<r>) determined by the residual resulting from b;, g;, and .i;: the memberships then inform the 
components for the next iteration, and olrl in general. The posterior distribution of v;.k expresses the propensity for individual i 
to join component k, and allows us to learn about the propensities of individual i, or perhaps the propensities of a collection of 
individuals. We can also learn about the overall composition of covariates across components, as in Table VI. 

Table VI was generated from 1000 random assignments of every individual i to a component according to their posterior 
distribution vi,k· In each one of the 1000 complete assignments, covariate distribution was calculated, and from these 1000 
samples, the mean and 95 per cent credible intervals for the covariate distribution were determined. Table VI shows that the 
distribution of the covariates is relatively uniform among components. Thus, there seems to be no combination of the specified 
covariates that st rongly interact to inform component membership; membership is driven by a factor that has not been identified. 
Despite the inability to predict component membership from the specified covariates, component 3 is associated with elevated 
vulnerability to adverse birth outcomes and, hence, is the natural sub-population to focus on for exploration of risk. 

To the extent that covariates are balanced between the three components there would seem to be no benefit in incorporating 
covariates to influence the mixing proportions since the covariates do not provide further information beyond the overall 
proportions. However, Gage er a/. [26) found that covariates did affect the mixing proportions in a univariate mixture model for 
birthweight. 
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Table IV. Birthweight and gestational age regression coefficients with 95 per cent credible intervals for each mixture model 
component 

Covariate Component k = 1 Component k = 2 Component k = 3 

BW Reported maternal smoking - 205.0 (-21 1.6, - 198.4) -227.8 (- 241.3, - 214.6) -85.1 (- 116.3, - 53.9) 

Male infant 137.2 (133.2, 141.2) 80.7 (72.4. 88. 9) 52.6 (29.7, 75.7) 

Mother reported not married -26.4 (- 31.5, - 21.2) - 40.3 (-51.0, -29.7) - 83.6 (-109.8, -57.3) 

Non-Hispanic black mother - 188.4 (-193.7, - 183.0) - 231.0 (-241.8, -220.0) -318.0 (-344.9, - 291.2) 

Hispanic mother - 49.1 (-56. 1, - 42.1 ) 44.0 (29.6, 58.5) 111.3 (76.5, 145.9) 

Mother complete MS -26.3 (-35.8, - 16.9) - 8.8 (-27.7, 10.1) 23.5 (-18.5,65.1 ) 

Mother complete some HS -35.9 (-42.5, - 29.4) - 24.9 (-38.0, - 11.7) 10.8 (-20.6,42.0) 

Mother complete some college 20.1 (14.4, 25.8) 47.2 (35.4, 59.2) 49.6 (20.4, 78. 7) 

Mother complete college 27.8 (21.5, 34.2) 125.9 (112.9, 1 39.0) 201.5 (169.6, 233.1) 

Maternal age 15- 19 -51.1 (-59. 1, - 43.0) 8.5 (-7.5,24.4) 43.8 (8.0, 79.3) 

Maternal age 20- 24 -29.6 (- 35.3, - 24.0) 12.2 (0.7,23.7) 71.0 (42.3, 1 00.0) 

Maternal age 30- 34 18.6 (12.8, 24.5) 7.6 (- 4.6, 19.9) 17.1 (- 1 2.9,46.9) 

Maternal age 35- 40 25.2 (17. 7, 32.8) -41.6 (- 57.1, - 25.9) - 15.2 (- 50.2, 19.4) 

Maternal age 41 - 45 2.3 (- 1 2.6, 1 7. 1) - 88.4 (-1 16.5, - 60. 1) - 35.4 (- 83.2, 12.8) 

First birth infant -55.1 (-59.6, - 50.6) -116.9 (-1 26.3, - 107.6) - 162.0 (-186.5, - 137.7) 

Residuals gestational age 104.7 (1 02.0, 1 07.5) 146.7 (143.0, 1 50.4) 146.2 (1 43. 1, 1 49.2) 

GA Reported maternal smoking -0.06 (-0.08, - 0.04) -0.36 (-0.41,-0.31 ) - 0.30 (-0.50, - 0.1 1) 

Male infant -0.01 (-0.02, - 0.00) -0.12 ( - 0.1 6, - 0.09) - 0.09 (-0.22, 0.05) 

Mother reported not married 0.07 (0.06, 0.08) -0.07 (-0.1 1,-0.03) - 0.47 (-0.63, - 0.31 ) 

Non-Hispanic black mother - 0.03 (-0.05, - 0.02) -0.43 (-0.47, - 0.39) - 1.75 (-1.91,-1.59) 

Hispanic mother 0.19 (0. 17, 0.21) 0.42 (0.37,0.47) 0.52 (0.30, 0. 73) 

Mother complete MS 0.08 (0.06, 0.1 1) - 0.07 (- 0.14,0.01) - 0.04 (-0.33,0.24) 

Mother complete some HS 0.01 (-0.00, 0.03) -0.11 (- 0.16, - 0.06) - 0.04 (-0.23,0.16) 

Mother complete some college - 0.04 (- 0.05, - 0.02) 0.07 (0.03, 0.12) 0.20 (0.02, 0.38) 

Mother complete college 0.05 (0.04, 0.07) 0.39 (0.34,0.44) 0.94 (0.74,1 .13) 

Maternal age 1 5- 19 - 0.01 (-0.03,0.01) 0.09 (0.03, 0.1 5) 0.08 (-0. 15,0.31) 

Maternal age 20-24 0.02 (0.01, 0.03) 0.11 (0.06, 0.1 5) 0.39 (0.21, 0.57) 

Maternal age 30- 34 - 0.04 ( - 0.06, - 0.03) - 0.04 (-0.09,0.00) 0.12 (-0.06, 0.31 ) 

Maternal age 35-40 - 0.09 {-0.11, - 0.07) - 0.21 (-0.26, - 0.15) -0.02 ( -0. 24, 0. 20) 

Maternal age 41-45 - 0.10 (-0.13,-0.06) - 0.39 (-0.51, - 0.28) - 0.22 (-0.59,0.14) 

First birth infant 0.40 (0.39, 0.42) - 0.19 (-0.23, - 0.16) - 0.60 (-0.75, - 0.46) 

Table V. location and shape parameter estimates with 95 per cent credible intervals for each mixture model component. 

Component k = 1 Component k = 2 Component k= 3 

Pk 0.716 (0.708, 0.724) 0.249 (0.241, 0.257) O.Q35 (0.034, 0.036) 
2 175073 (173 808, 176 345) 127073 (123911, 130318) 131820 (124 370, 139 481 ) 0b,k 

~.k 0.96 (0.95, 0.97) 2.48 (2.42, 2.54) 13.23 (12.78, 13.67) 

11b,k 3514 (3507, 3521 ) 3103 (3088, 3118) 1899 (1864, 1934) 

11b,k 39.59 (39.58, 39.61 ) 38.26 (38.20, 38.32) 33.29 (33.07, 33.51 ) 

Pk 0.238 (0.232, 0.2425) 0.544 (0.533, 0.555) 0.826 (0.816, 0.835) 

5.3. Prediction 

Bivariate predictions can be made from the model. as well as predictions from the induced distributions of g;lb;,z; and b;lg;,z;. 

Bivariate predictions are given by: 

(4) 

Tables IV and V give some indication of bivariate predictions, but they provide estimates and credible intervals for parameters, 

rather than predictions; calculating equation (4) at each posterior iteration t provides the correct estimates and uncertainties. 
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Figure 3. A posterior point estimate of the component configuration for individual A. The ellipses correspond to contours containing -"=' 86.5 per cent of mass 
associated with the component. The thickness conveys the relative proportions in the mixture distribution (see Table V). 

Predictions of birthweight given gestational age (or vice versa) may be conditional on any continuous value, e.g. birthweight 
conditional on the 'true' gestational age, and not only integer (censored) gestational age, as given by: 

s rrkN(g;IZjflg,k• o~.k) _
1 

_, 

E(b;lg;,z;) = L "s _1 2 (z;/Jb,k +(g; - z;flg,k)fl •• k) 
k= 1 L...j= 1 TrjN(g;lz;flg,j• o g) 

(5) 

(6) 

where 

8 P •. k 
... k= 2' 

p2 + ( ublg,k ) 
,.,k Ug,k 

In equations (5) and (6) above 11 has been incorporated into [J for compactness which has generated the byproduct z. The 
conditional prediction (dist ribution) of gestational age given birthweight while not a standard consideration may have uses, e.g. 
in imputation of missing values and detection of mismeasured gestational ages. 

A related condit ional prediction is the small for gestational age cutpoint SGA(g;). which is found through area predict ion in 
the conditional model of birthweight given gestational age: 

! SGA(g;) s RkN(g;IJig,k+z/flg.k·(J~.k) I I 

Pred(SGA(g;)lz;):O.l = L Ls 
1 2 N(b;litb,k+z;llb,k+(g;-(!tg,k+z;flg,k))fl •• k.oblg,k) db. 

- oo k= l j=1 TrjN(g;l!tg,j+z;fJg,j•ag) 
(7) 

In Tables VII- IX conditional predictions of birthweight given gestational age, gestational age given birthweight, and the SGA 
cutpoint are given for individuals A-H (see Table Ill). Prediction and interval curves are available for the three condit ional 
predictions described above, but are only demonstrated for the SGA cutpoint in Figure 4 which contrasts SGA for individuals A 
and H. The differences in predictions seen in Tables VII-IX are due to the different covariate configurations of individual A-H 
which result in different joint birthweight gestational age distributions (as in Figure 3). 

5.4. Bivariate distribution 

Our model provides a bivariate distribution to capture the empirical joint distribution of birthweight and gestational age (e.g. 
recall Figures 1 and 2). Such a parametric model allows us to incorporate covariates and provide a joint surface from which to 
proceed with inference, e.g. see Figure 5. We are not limited to the previously discussed conditional inferences, as we can address 
joint inference associated with the joint distribution. 

Table X provides estimates of the probability of both LBW and PTB for individuals A- H. using 

Copyright~ 2010 John Wiley & Sons, Ltd. 

Pr((b;, g;) E LBW x PTBiz;) = t nk J N(Mk, Sk). 
k= l 

LBWx PTB (8) 
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Table VI. The compositional makeup of each mixture model component as observed in posterior sampling. 

~omponent 
omposition Component 1 Component 2 Component 3 Overall 

~ubcomponent 240679.77 (2401180, 241120) 83702.95 (83301, 84 277) 11746.28 (11 600, 11 905) 336129 

15ize 
Reported 11.6 ( 11.6, 11.7) 12.0 (11.8, 12.2) 14.3 (13.9. 14.7) 11.8 

maternal smoking 
(per cent) 
Male infant 51.0 (50.9, 51.1) 51.1 (50.9, 51.4) 53.1 (52.4, 53.8) 51.1 
~per cent) 
~other reported 38.1 (38.0, 38.2) 38.8 (38.5, 39.1) 44.5 (44.0, 45.2) 38.5 
not married 
(per cent) 
Non-Hispanic 23.3 (23.2, 23.3) 23.9 (23.7, 24.1) 30.8 (30.3, 31.3) 23.7 
black mother 
(per cent) 
Hispanic mother 16.4 (16.3. 16.5) 16.5 (16.3, 16.8) 15.0 (14.6, 15.6) 16.4 
(per cent) 
~other 7.2 (7.1, 7.2) 7.3 (7.2, 7.5) 6.8 (6.5, 7.2) 7.2 

1 
ompleted MS 
per cent) 

Mother 15.9 (15.8, 16.0) 16.3 (16.1, 16.6) 18.0 (17.5, 18.4) 16.1 
ompleted some 

HS (per cent) 
Mother 22.1 (22.0, 22.2) 22.1 (21.8, 22.3) 22.3 (21.8, 22.9) 22.1 
ompleted some 
ollege (per cent) 

Mother 26.1 (26.0, 26.2) 25.6 (25.4, 25.8) 23.0 (22.4, 23.4) 25.9 
completed 

f llege IP" eeoc) 
aternal age 11.4 (11.4, 11.5) 11.7 (11.5, 12.0) 13.2 (12.8, 13.5) 11.6 

5- 19 (per cent) 
Maternal age 27.1 (27.0, 27.2) 27.4 (27.1, 27.6) 26.8 (26.4, 27.5) 27.1 
20- 24 (per cent) 
Maternal age 22.1 (22.0, 22.2) 21.8 (21.6, 22.2) 21.8 (21.3. 22.3) 22.0 
30-44 (per cent) 
Maternal age 10.1 (10.0, 10.2) 10.0 (9.8, 10.2) 10.9 (1 0.6, 11.2) 10.1 
35- 39 (per cent) 
Maternal age 1.9 (1.8, 1.9) 1.9 (1.8, 2.0) 2.4 (2.2, 2.6) 1.9 
40- 44 (per cent) 
First birth infant 40.8 (40.7, 40.8) 41.3 (41.0, 41.5) 45.0 (44.3, 45.8) 41.0 
per cent) 

Final column labeled 'Overall' shows the characteristics of the original populat ion. 

Table VII. Conditional expectation of birthweight given gestational age along with 95 per cent credible interval for 
individuals A-H at gestational ages 34, 37, 39, and 40 weeks. 

A B c D 

34 2039.2 (2018.3, 2059.7) 2.0547 (2.0308, 2.0779) 2103.8 (2076.6, 2130.3) 2113.3 (2085.9, 2140.1 ) 

37 2579.5 (2564.9, 2594.2) 2.6160 (2.6005. 2.6316) 2743.8 (2729.8, 2757.7) 2780.0 (2767.2, 2792.9) 

39 3008.7 (3001.0, 3016.5) 3.041 5 (3.0333, 3.0498) 3183.5 (3176.3, 3190.6) 3216.3 (3209.6, 3223.2) 

40 3130.9 (3122.8, 3139.1 ) 3.1632 (3.1545, 3.1719) 3309.8 (3302.3, 3317.4) 3341.5 (3334.4, 3348.6) 
E F G H 

34 2126.6 (2103.6, 2149.0) 2131.9 (2106.8, 2156.2) 2142.0 (211 1.9, 2171.6) 2146.5 (2119.5, 2173.2) 
37 2752.5 (2740.7, 2764.3) 2788.9 (2777.1, 2800.9) 2914.3 (2901.7, 2926.7) 2950.3 (2940.1, 2960.6) 

39 3197.5 (3191.4, 3203.5) 3230.5 (3224.2, 3236.8) 3371.4 (3365.2, 3377.6) 3404.6 (3399.3, 341 0.0) 

40 3324.6 (3318.2, 3330.8) 3356.4 (3349.9, 3363.0) 3501.9 (3495.4, 3508.3) 3533.2 (3527.8, 3538.6) 
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Table VIII . Conditional expectation of gestational age given birthweight along with 95 per cent credible interval for 
individuals A- H at birthweights 1500, 2500, 3500, and 4000 g. 

A B c D 

1500 32.41 (32.21, 32.62) 32.26 (32.03, 32.48) 31.77 (31.54, 31.99) 31.78 (31.55, 32.00) 
2500 38.26 (38.22, 38.29) 38.17 (38.13, 38.21) 37.95 (37.91, 37.99) 37.88 (37.84, 37.92) 
3500 39.76 (39.73, 39.78) 39.67 (39.65, 39.69) 39.66 (39.64, 39.68) 39.58 (39.56, 39.60) 
4000 40.06 (40.04, 40.08) 39.98 (39.96, 40.01) 40.00 (39.98, 40.02) 39.92 (39.90, 39.94) 

E F G H 
1500 31.41 (31.22, 31.60) 31.41 (31.20, 31.61) 31.41 31.19 31.63 31.47 (31.28, 31.67) 
2500 37.90 (37.87, 37.94) 37.83 (37.79, 37.87) 37.60 37.56 37.65 37.54 (37 50, 37.58) 
3500 39.67 (39.66, 39.69) 39.59 (39.57, 39.61 ) 39.56 39.55 39.58 39.49 (39.47, 39.50) 
4000 40.01 (39.99, 40.03) 39.93 (39.91, 39.95) 39.95 39.93 39.96 39.87 (39.86, 39.89) 

Table IX. SGA cutpoint predictions and 95 per cent credible interval for individuals A- H at gestational ages 34, 37, 39, 
and 40. 

34 
37 
39 
40 

34 
37 
39 
40 

A 

1579.9 (1557.9, 1601.2) 
2112.1 (2096.8, 2127.2) 
2483.1 (2475.2, 2491.1) 
2599.3 (2590.9, 2607.7) 

E 
1666.0 (1641.8, 1689.7) 
2285.8 (2273.2, 2298.1 ) 
2674.3 (2667.9, 2680.6) 
2794.6 (2788.0, 2801.1 ) 

B 

1594.9 (1 570.2, 1619.0) 
2146.6 (2130.6, 2162.5) 
2516.0 (2507.6, 2524.5) 
2632.1 (2623.1, 2641.0) 

F 
1670.9 (1644.3, 1 696.7) 
2320.3 (2307.7, 2332.8) 
2707.2 (2700.6, 2713.8) 
2827.0 (2820.2, 2833.8) 

c 
1642.5 (1613.8. 1670.4) 
2276.2 (2261.6, 2290.7) 
266Q.6 (2653.1, 2668.0) 
2780.4 (2772.6. 2788.1) 

G 
1679.5 (1647.4, 1 711.0) 
2446.8 (2433.8, 2459.9) 
2850.6 (2844.1, 2857.1) 
2974.2 (2967.5, 2980.8) 

D 

1651.8 (1 622.7, 1679.9) 
231 0.5 (2297.1, 2323.8) 
2693.4 (2686.3, 2700.5) 
2812.7 (2805.3, 2820.0) 

H 
1683.8 (1654.6, 1712.7) 
2480.8 (2469.9, 2491.7) 
2883.6 (2878.0, 2889.3) 
3006.1 (3000.4, 3011.8) 
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Figure 4. Condotional predictions of the small for gestational age cutpoint SGA(g) (the lOth percentile cutpoint of birthweight at gestational age g) for individuals 
A and H. The single gestational age axis is separated into three plots so that the 95 per cent credible intervals may be examined. The predictions were generated 

from the conditional distributions implied by the joint distributions represented in Figure 3. Table IX provides the related results for other individuals. 

Again for individuals A- H, Table X provides probability estimates for two age inappropriate (AI(g1)) birthweight classifications: 
Al(35) (less than 2000 g for 35 and 36 weeks gestational age) and A1(37+) (less than 2500 g for greater or equal to 37 weeks 
gestational age). These probability estimates are provided using an expression similar to (8). 

6. Discussion and future work 

Our demonstration has highlighted the gradient of differences between individuals A- H with respect to the joint variable 
birthweight and gestational age. Specifically, we have quantified a gradient of impacts associated with the characterist ics of 
individual A through the referent individual H. For example, we demonstrate in Figure 3 how the overall joint distribution is 
less favorable for A than H. As indicated in Table IV, race is the primary variable associated with distribution location difference 
(of up to approximately -320 g and approximately - 1.75 weeks gestation), with the strongest differences appearing in the 
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Figure 5. Point estimate of the surface or the mixture distribution for binhweight and gestational age for the referent individual H. The orientation of this plot 

is a nonstandard "' 180' rotational form. As a result, binhweight increases from top to bottom and gestational age decreases I rom left to right. Posterior 95 

per cent credible intervals of the surface t1ghtly lit this curve, and so were not included in this image. 

Table X. Probability estimates and 95 per cent credible intervals for LBW and PTB, A/(35) (les.s than 2000 g for 35 and 36 

weeks gestational age), and A/(37+) (less than 2500 g for greater or equal to 37 weeks gestational age) for individuals A- H 

at gestational ages 34, 37, 39, and 40 weeks. 

A B c D 

LBW + PTB (per cent) 9.55 (9.27, 9.83) 8.97 (8.69, 9.27) 6.49 (6.29. 6.69) 6.01 (5.83, 6.19) 

A/(35) (per cent) 0.88 (0.83, 0.93) 0.78 (0.73, 0.84) 0.44 (0.41, 0.47) 0.39 (0.37, 0.42) 

~/(37+) (per cent) 1.52 (1.45, 1.60) 1.34 (1.27, 1.41) 0.64 (0.60, 0.68) 0.55 (0.52. 0.59) 

E F G H 

LBW + PTB (per cent) 6.90 (6.73, 7.07) 6.44 (6.27, 6.61) 4.61 (4.49, 4.74) 4.26 (4.15, 4.36) 

A/(3S) (per cent) 0.42 (0.39, 0.45) 0.37 (0.35, 0.40) 0.21 (0.20, 0.23) 0.20 (0.18, 0.21) 

A/(37+ ) (per cent) 0.59 (0.56, 0.62) 0.51 (0.48, 0.53) 0.23 (0.21, 0.24) 0.20 (0.18, 0.21) 

tail of the joint distribution. Smoking is also a major driver accounting for location difference (of up to approximately - 230 g 

and approximately - 0.35 weeks gestation) and tends to affect birthweight in the main mass and gestational age in the tail of 

the distribution. Marital status contributes additional difference (of up to approximately -80 g and approximately - 0.5 weeks 

gestation) for unmarried women, primarily in the tail. Further detail of the varying impacts of individual covariates across the joint 

distribution is given in Table IV and may be contrasted with Table I. Again, as discussed in Section 3, our joint variable framework 

provides these coefficient estimates (Table IV), free of the problem of treating birthweight or gestational age as intermediate 

variables. 
Because of the gradient of distributional differences from individuals A through H, there is a resulting gradient of differences 

SGA and expected birthweight conditional on gestational age, with the curves separating by as much as approximately 400 g in 

places. An analogous gradient occurs in the percentage of PTB and LBW infants (with up to an approximately twofold prevalence 

increase), and the percentage of age inappropriate births for gestational ages 35 and 37+ (with up to approximately fivefold and 

approximately eightfold prevalence increases, respectively). 
Our model provides a joint distribution of birthweight and gestational age conditional on covariates, and hence readily 

accommodates inference concerning disparities in birthweight and/ or gestational age in a richer way than previously considered. 

Further work may provide even more opportunities. Certainly thorough attention to mis-measurement in gestational age and 

further exploration of the role of covariates in the model's mixing proportions are warranted. Given the longitudinal nature 

of birth record data, a dynamic perspective could also be considered to investigate whether and how the joint distribution is 

changing over time. A spatial component could be brought into the modeling to accommodate birth records that have been 

geocoded and hence learn about the possible spatial structure underlying the data. 
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